RAD5a and REV3 function in two alternative pathways of DNA-damage tolerance in Arabidopsis.
نویسندگان
چکیده
DNA-damage tolerance (DDT) in yeast is composed of two parallel pathways and mediated by sequential ubiquitinations of PCNA. While monoubiquitination of PCNA promotes translesion synthesis (TLS) that is dependent on polymerase ζ consisted of a catalytic subunit Rev3 and a regulatory subunit Rev7, polyubiquitination of PCNA by Mms2-Ubc13-Rad5 promotes error-free lesion bypass. Inactivation of these two pathways results in a synergistic effect on DNA-damage responses; however, this two-branch DDT model has not been reported in any multicellular organisms. In order to examine whether Arabidopsis thaliana possesses a two-branch DDT system, we created rad5a rev3 double mutant plant lines and compared them with the corresponding single mutants. Arabidopsis rad5a and rev3 mutations are indeed synergistic with respect to root growth inhibition induced by replication-blocking lesions, suggesting that AtRAD5a and AtREV3 are required for error-free and TLS branches of DDT, respectively. Unexpectedly this study reveals three modes of genetic interactions in response to different types of DNA damage, implying that plant RAD5 and REV3 are also involved in DNA damage responses independent of DDT. By comparing with yeast cells, it is apparent that plant TLS is a more frequently utilized means of lesion bypass than error-free DDT in plants.
منابع مشابه
RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana.
Complex DNA structures, such as double Holliday junctions and stalled replication forks, arise during DNA replication and DNA repair. Factors processing these intermediates include the endonuclease MUS81, helicases of the RecQ family, and the yeast SNF2 ATPase RAD5 and its Arabidopsis thaliana homolog RAD5A. By testing sensitivity of mutant plants to DNA-damaging agents, we defined the roles of...
متن کاملThe Translesion Polymerase ζ Has Roles Dependent on and Independent of the Nuclease MUS81 and the Helicase RECQ4A in DNA Damage Repair in Arabidopsis.
DNA polymerase zeta catalytic subunit REV3 is known to play an important role in the repair of DNA damage induced by cross-linking and methylating agents. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the basic polymerase activity of REV3 is essential for resistance protection against these different types of damaging agents. Interestingly, its processivity is mainly required...
متن کاملRole of AtPolζ, AtRev1, and AtPolη in UV light-induced mutagenesis in Arabidopsis.
Translesion synthesis (TLS) is a DNA damage tolerance mechanism in which DNA lesions are bypassed by specific polymerases. To investigate the role of TLS activities in ultraviolet light-induced somatic mutations, we analyzed Arabidopsis (Arabidopsis thaliana) disruptants of AtREV3, AtREV1, and/or AtPOLH genes that encode TLS-type polymerases. The mutation frequency in rev3-1 or rev1-1 mutants d...
متن کاملRole of AtPolz, AtRev1, and AtPolh in UV Light-Induced Mutagenesis in Arabidopsis
Translesion synthesis (TLS) is a DNA damage tolerance mechanism in which DNA lesions are bypassed by specific polymerases. To investigate the role of TLS activities in ultraviolet light-induced somatic mutations, we analyzed Arabidopsis (Arabidopsis thaliana) disruptants of AtREV3, AtREV1, and/or AtPOLH genes that encode TLS-type polymerases. The mutation frequency in rev3-1 or rev1-1 mutants d...
متن کاملRoles of Arabidopsis AtREV1 and AtREV7 in translesion synthesis.
Plants have mechanisms for repairing and tolerating detrimental effects by various DNA damaging agents. A tolerance pathway that has been predicted to be present in higher plants is translesion synthesis (TLS), which is catalyzed by polymerases. In Arabidopsis (Arabidopsis thaliana), however, the only gene known to be involved in TLS is the Arabidopsis homolog of REV3, AtREV3, which is a putati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- DNA repair
دوره 10 6 شماره
صفحات -
تاریخ انتشار 2011